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A Preferable Benchmarking Situation

Better?

Current State-of-the-Art

D-Wave Based Algorithm

Claim: On this problem, 
D-Wave is state-of-the-art. 

The ends justify the means.

Protein 
Folding
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The Benchmarking Problem
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A Benchmarking Stopgap

DW2XC12

B-QP 
Solvers

or-tools

…

Problem 
Generation
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Problems with Problem Generation

• How hard are randomly generated problems? 
• Lessons learned from Random SAT

as ist 

avid itchell 
Dept. of Computing Science AT&T Bell Laboratories 

Simon Fraser University Murray Hill, NJ 07974 

Burnaby, Canada V5A lS6 selmanQresearch.att.com 

mitchellQcs.sfu.ca 

Abstract 

We report results from large-scale experiments in 
satisfiability testing. As has been observed by 
others, testing the satisfiability of random formu- 
las often appears surprisingly easy. Here we show 
that by using the right distribution of instances, 
and appropriate parameter values, it is possible 
to generate random formulas that are hard, that 
is, for which satisfiability testing is quite difficult. 
Our results provide a benchmark for the evalua- 
tion of satisfiability-testing procedures. 

Introduction 
Many computational tasks of interest to AI, to the ex- 
tent that they can be precisely characterized at all, 
can be shown to be NP-hard in their most general 
form. However, there is fundamental disagreement, at 

least within the AI community, about the implications 
of this. It is claimed on the one hand that since the 
performance of algorithms designed to solve NP-hard 
tasks degrades rapidly with small increases in input 
size, something will need to be given up to obtain ac- 
ceptable behavior. On the other hand, it is argued 
that this analysis is irrelevant to AI since it based on 
worst-case scenarios, and that what is really needed is 
a better understanding of how these procedures per- 
form “on average”. 

The first computational task shown to be NP-hard, 
by Cook (1971) was propositional satisfiability or 
SAT: given a formula of the propositional calculus, de- 
cide if there is an assignment to its variables that makes 
the formula true according to the usual rules of inter- 
pretation. Subsequent tasks have been shown to be 
NP-hard by proving they are at least as hard as SAT. 
Roughly, a task is NP-hard if a good algorithm for it 
would entail a good algorithm for SAT. Unlike many 
other NP-hard tasks (see Garey and Johnson (1979) for 
a catalogue), SAT is of special concern to AI because 
of its direct relationship to deductive reasoning (i.e., 

*Fellow of the Canadian Institute for Advanced Re- 
search, and E. W. R. Steacie Fellow of the Natural Sciences 
and Engineering Research Council of Canada 

Dept. of Computer Science 

University of Toron to 

Toronto, Canada M5S lA4 

hector8ai. toronto.edn 

given a collection of base facts C, a sentence cy may be 
deduced iff C U {lo} is not satisfiable). Many other 
forms of reasoning, including default reasoning, diag- 
nosis, planning and image interpretation, also make 

direct appeal to satisfiability. The fact that these usu- 
ally require much more than the propositional calculus 
simply highlights the fact that SAT is a fundamental 
task, and that developing SAT procedures that work 
well in AI applications is essential. 

We might ask when it is reasonable to use a sound 
and complete procedure for SAT, and when we should 
settle for something less. Do hard cases come up often, 
or are they always a result of strange encodings tailored 
for some specific purpose ? One difficulty in answering 
such questions is that there appear to be few applica 
ble analytical results on the expected difficulty of SAT 
(although see below). It seems that, at least for the 
time being, we must rely largely on empirical results. 

A number of papers (some discussed below) have 
claimed that the difficulty of SAT on randomly gen- 
erated problems is not so daunting. For example, an 
often-quoted result (Goldberg, 1979; Goldberg et al. 
1982) suggests that SAT can be readily solved “on av- 
erage” in 0(n2) time. This does not settle the question 
of how well the methods will work in practice, but at 
first blush it does appear to be more relevant to AI 
than contrived worst cases. 

The big problem is that to examine how well a pro- 
cedure does on average one must assume a distribution 
of instances. Indeed, as we will discuss below, Franc0 
and Paul1 (1983) refuted the Goldberg result by show- 
ing that it was a direct consequence of their choice of 
distribution. It’s not that Goldberg had a clever al- 
gorithm, or that the problem is easy, but that they 
had used a distribution with a preponderance of easy 
instances. That is, from the space of all problem in- 
stances, they sampled in a way that produced almost 
no hard cases. 

Nevertheless, papers continue to appear purport- 
ing to empirically demonstrate the efficacy of some 
new procedure, but using just this distribution (e.g., 
Hooker, 1988; Kamath et al. 1990), or presenting data 
suggesting that very large satisfiability problems - 
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Example: What’s the Difference?

EASIEST
ferromagnet 
in disguise!

HARDEST
super frustrated 

system
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The Key Challenge

How to generate a HARD D-Wave case

?
look to the literature 
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Proposed Problem Generators

• RAN-k 
• set field to zero 
• set couplers at random 
• use k discrete steps

https://arxiv.org/abs/1508.05087

https://arxiv.org/abs/1508.05087
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Proposed Problem Generators

• RANF-k 
• set field at random 
• set couplers at random 
• use k discrete steps
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Proposed Problem Generators

• Frustrated Loops (FL) 
• find random cycles 
• add one edge of 

frustration 
• overlay multiple cycles

https://arxiv.org/abs/1508.05087

https://arxiv.org/abs/1508.05087
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Proposed Problem Generators
• Frustrated Cluster Loops 

(FCL) 
• find random cycles 
• add one edge of frustration 
• overlay multiple cycles

https://arxiv.org/abs/1701.04579
https://arxiv.org/abs/1703.00622

https://arxiv.org/abs/1701.04579
https://arxiv.org/abs/1703.00622
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Proposed Problem Generators

• Weak-Strong Cluster 
Networks (WSCN) 

• random grid of two 
cell gadgets

https://arxiv.org/abs/1512.02206

https://arxiv.org/abs/1512.02206


LA-UR-17-23540

15

What to Compare?
Cases Solvers

?
HFS

or-tools

qbsolv

SA
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Types of Solvers

Discrete OptimizationProblem Size

So
lu

tio
n 

Q
ua

lity
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OPT

1 632 4 5

DP, CP
MIP

LS

Hybrids ?
HFS

SA, Tabu Search
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Classic B-QP Solver

Run Time

Solution 
Cost

goal

Best Sol. Found (Upper Bound)

Opt. Proof

Lower Bound on Sol.
Time Limit (10m)

Opt. Gap {
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HFS Solver
Hamze-de Freitas-Selby (HFS)

https://github.com/alex1770/QUBO-Chimera
https://arxiv.org/pdf/1207.4149.pdf

From Fields to Trees

Firas Hamze Nando de Freitas

Computer Science Department
University of British Columbia
{fhamze,nando}@cs.ubc.ca

Abstract

We present new MCMC algorithms for com-
puting the posterior distributions and expec-
tations of the unknown variables in undi-
rected graphical models with regular struc-
ture. For demonstration purposes, we fo-
cus on Markov Random Fields (MRFs). By
partitioning the MRFs into non-overlapping
trees, it is possible to compute the posterior
distribution of a particular tree exactly by
conditioning on the remaining tree. These
exact solutions allow us to construct effi-
cient blocked and Rao-Blackwellised MCMC
algorithms. We show empirically that tree
sampling is considerably more efficient than
other partitioned sampling schemes and the
naive Gibbs sampler, even in cases where
loopy belief propagation fails to converge.
We prove that tree sampling exhibits lower
variance than the naive Gibbs sampler and
other naive partitioning schemes using the
theoretical measure of maximal correlation.
We also construct new information theory
tools for comparing different MCMC schemes
and show that, under these, tree sampling is
more efficient.

1 INTRODUCTION

Rao-Blackwellised sampling is a powerful inference
tool for probabilistic graphical models (Doucet, de Fre-
itas, Murphy and Russell 2000, Paskin 2003, Bidyuk
and Dechter 2003). In this paper, we propose a new
Rao-Blackwellised MCMC algorithm for MRFs, which
is easily expandable to other models, such as condi-
tional random fields (Kumar and Hebert 2003, Mc-
Callum, Rohanimanesh and Sutton 2003). MRFs play
an important role in spatial statistics and computer
vision (Besag 1986, Besag 1974, Li 2001). Existing
MCMC algorithms for MRFs tend to be slow and
fail to exploit the structural properties of the MRF

Figure 1: At left, illustration of a partitioned MRF; nodes in the
shaded and white regions are ∆1, ∆2 respectively, with the small
black circles representing observations. At right, depiction of the
two-stage sampler; sampled values are large black circles. Condi-
tioned on ∆1, the variables in ∆2 form a tree. Using this two-stage
scheme, Rao-Blackwellised estimators are guaranteed to outperform
naive ones.

graphical model (Geman and Geman 1984, Swendsen
and Wang 1987). In contrast, variational approxima-
tion schemes (Yedidia, Freeman and Weiss 2000, Wain-
wright, Jaakkola and Willsky 2003) do exploit struc-
tural properties, but may often fail to converge.

The algorithm proposed in this paper exploits the
property that MRFs can be split into two disjoint
trees. By carrying out exact inference on each tree,
it is possible to sample half of the MRF nodes in a
single MCMC step. Our theorems will show that this
tree sampling method outperforms simpler MCMC
schemes. In particular, it exhibits lower correlation
between samples and a faster geometric convergence
rate. These theoretical results will be mirrored by our
numerical examples.

2 TREE SAMPLING FOR MRFS

2.1 MODEL SPECIFICATION

We specify the MRF distribution on a graph G(V , E),
with edges E and N nodes V as shown in Figure 1 left.
The clear nodes correspond to the unknown discrete
states x ∈ {1, . . . , nx}, while the attached black nodes
represent discrete observations y ∈ {1, . . . , nx} (they
could also be Gaussian). According to this graph, the
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D-Wave For Optimization

DW2XC12

• 10,000 samples @ 5 micro 
seconds each 

• random gauge transform 
every 100 samples 

• use the best of all samples 
• Takes 3.5 seconds on the 

QPU
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Open-Source B-QP Tools
Your 

Problem SAPI

HFS

or-tools

BQPJSON
D-Wave 
Instance 

Generator 
(DWIG)

BQPSOLVERS

qbsolv

problem spec. glue code

https://github.com/lanl-ansi/dwig
https://github.com/lanl-ansi/bqpjson

Scott  
(CCS-7)

Open Source Code

https://github.com/lanl-ansi/bqpsolvers
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Time for the Fun Stuff!

HFS
D-Wave 
Instance 

Generator 
(DWIG)

BQPSOLVERS
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Structure of the Benchmark Study 

RAN-k

RANF-k

FL-k

FCL-k

WSCN
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Problem Hardness Test
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How does Hardness change with K?
RAN Steps vs Runtime
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Marc  
(T-4)

Sidhant  
(T-5)

Andrey  
(CNLS/T-4)

These guys know what they are talking about
“Have you tried setting the couplers to -1,1 at random?”

09/2016
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Focusing
A Detailed Study of RAN-1

HFS

(Similar story for RANF-1, omitted for time)
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Detailed Runtime Studies

C5

C12

Part 1 Part 2

HFS

Quality Validation
(Known Global Optimum)

Wishful Extrapolation
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Detailed Runtime Studies

Run Time

Solution 
Cost

goal

Best Sol. Found (Upper Bound)

Opt. Proof

Lower Bound on Sol.
Time Limit (10m)

Opt. Gap {
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Detailed Runtime Study 1 (RAN-1)
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Detailed Runtime Study 1 (RAN-1) C5
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Detailed Runtime Study 2 (RAN-1) C12
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Scalability Study

C1 C2 C3 C12. . .
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Scalability Study RAN-1
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A Word of Caution about RAN-1
• The relative difference in energy between the best HFS 

solution and the worst HFS solution is only <1% 
• And a similar property is true for the D-Wave! 

• This suggests that the RAN problem has many nearly-equal 
local minima 
• This property is not desirable for benchmarking 

heuristics (e.g. SA, TabuSearch, HFS) 
• Continued work is needed to design generators of           

more challenging test cases!
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Concluding Thoughts
• It seems that all of the popular test cases from 

the literature are “easy” 
• Our D-Wave 2X chip is reliable for well-suited 

optimization applications (e.g. maxcut), but the 
point where it will overtake classical heuristics is 
not yet clear (2000Q anyone?) 

• We still have more questions, than answers!
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Q?
Special Thanks

Ryan  
(CCS-7)

Admin of ASC’s  
Darwin ClusterDarwin Jobs: 1,025,122 

Darwin CPU Days: 1,290

D-Wave Jobs: 60,176 
D-Wave CPU Days: 1.16

Project Workload
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Detailed Annealing Time Study C12
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Detailed Runtime Study 1 (RANF-1) C5
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Detailed Runtime Study 2 (RANF-1) C12
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Scalability Study RANF-1
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Problem Classes

MI-QCQP
B-QP

DW2XC12


